Fixed points of symplectic periodic flows

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed points of symplectic periodic flows

The study of fixed points is a classical subject in geometry and dynamics. If the circle acts in a Hamiltonian fashion on a compact symplectic manifoldM , then it is classically known that there are at least dim M 2 +1 fixed points; this follows fromMorse theory for the momentum map of the action. In this paper we use Atiyah-Bott-Berline-Vergne (ABBV) localization in equivariant cohomology to p...

متن کامل

Fermat and the Number of Fixed Points of Periodic Flows

We obtain a general lower bound for the number of fixed points of a circle action on a compact almost complex manifold M of dimension 2n with nonempty fixed point set, provided the Chern number c1cn−1[M ] vanishes. The proof combines techniques originating in equivariant K-theory with celebrated number theory results on polygonal numbers, introduced by Pierre de Fermat. This lower bound confirm...

متن کامل

Fixed points of symplectic tranformations

Let (M,ω) be a closed symplectic manifold. Given a function H : M → R the Hamiltonian vector field XH determined by the Hamiltonian H is defined by the formula XH ω = −dH. Then LXHω = 0, and hence the flow generated by XH preserves the symplectic form ω. If one has a family of functions Ht : M → R, t ∈ [0, 1], one gets a family of Hamiltonian vector fields XHt which generate an isotopy ft : M →...

متن کامل

The Arnold Conjecture for Fixed Points of Symplectic Mappings and Periodic Solutions of Hamiltonian Systems

defines a family of diffeomorphisms on M which preserve the symplectic structure; i.e., for every t G R, (0*)*w = w, so that cj) is a symplectic diffeomorphism. DEFINITION. In the following we shall call a map on M Hamiltonian if it belongs to the flow 0* of any time-dependent exact Hamiltonian vector field on M. We remark that one can show that the set of Hamiltonian maps is the subgroup [...

متن کامل

Fixed Points and Periodic Points of Semiflows of Holomorphic Maps

Let φ be a semiflow of holomorphic maps of a bounded domain D in a complex Banach space. The general question arises under which conditions the existence of a periodic orbit of φ implies that φ itself is periodic. An answer is provided, in the first part of this paper, in the case in which D is the open unit ball of a J∗-algebra and φ acts isometrically. More precise results are provided when t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2010

ISSN: 0143-3857,1469-4417

DOI: 10.1017/s0143385710000295